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A Gaussian-like quadrature scheme for evaluating matrix elements between one- 
dimensional numerical wavefunctions is developed. The abscissae are the zeroes of a high 
vibrational wavefunction for the potential curve concerned, and the weights are defined so that 
integrals over low-order wavefunctions are evaluated exactly. The method gives results 
sufficiently accurate for most purposes with only a few quadrature points, and is signiticantiy 
more accurate than Gauss-Hermite quadrature. It should be particularly valuable in reactive 
and inelastic scattering problems. 

There are many problems in molecular scattering and spectroscopy which require 
matrix elements of operators between numerically calculated vibrational 
wavefunctions. In the one-dimensional case, the wavefunctions themselves are usually 
calculated on an equally spaced radial mesh using Wumerov integration and the 
Cooley method [l]. Traditionally, matrix elements are then calculated using 
Simpson’s rule or the trapezoidal rule on the same radial mesh. 

The traditional methods are quite expensive to apply, but present no difficulty 
when only a few matrix elements are required. However, this is not always the case. 
For example, in reactive and vibrationally inelastic scattering problems using realistic 
potentials, matrix elements of potential energy functions must be calculated many 
thousands of times, and it is not feasible to store all the vibrational wavefunctions on 
a sufficiently fine mesh to evaluate the integrals accurately using the traditional 
methods. It would also be computationally intractable to recalculate each vibrational 
wavefunction every time it is required. It is thus desirable to devise a quadrature 
scheme which allows matrix elements of an arbitrary function to be calculated using 
a small number of quadrature points. To this end, we wish to find optimum sets of 
points xi and weights l”li such that a matrix element may be approximated 

The family of Gaussian quadratures enables a wide a range of integrals to be 
calculated accurately with very few integration points, but none of them is 
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particularly suitable for integrands of the type found in vibrational matrix elements. If 
Gauss-Legendre quadrature is used the integrand must be arbitrarily assumed to be 
negligible beyond a specified range of r, while for Gauss-Laguerre and 
Gauss-Hermite quadrature an appropriate exponent parameter must be chosen. In 
neither case is the appropriate choice immediately obvious, although Gaussian 
quadratures have been used for such problems [2]. For the special case of matrix 
elements between orthogonal functions, Harris et al. [3] have introduced a useful 
quadrature scheme, and this has been shown to be related to generalised Gaussian 
quadrature [4]; however, the restriction to orthogonal functions prevents the 
application of this scheme to matrix elements between states of different angular 
momenta. 

Although the usual Gaussian quadratures are not themselves appropriate for 
calculating vibrational matrix elements, the methods used in deriving them [5] 
suggest a useful approach to the development of a quadrature scheme with the 
required properties. Gaussian quadratures choose as abscissae for an N-point 
quadrature the zeroes of an Nth-order orthogonal polynomial. Vibrational 
wavefunctions are not actually orthogonal polynomials, but they share some of their 
important properties (notably orthogonality!). It therefore seems reasonable that the 
zeroes of a vibrational wavefunction v,(r) would be a suitable set of points for 
evaluating integrals over wavefunctions of the same potential with less than N nodes. 

At first sight, one drawback of choosing the zeroes of y,(r) as abscissae appears to 
be that the number of points cannot be increased without increasing the range they 
span: the abscissae lie between the classical turning points at the energy E, of vjv(r). 
However, this is not an insuperable problem. A denser set of points may be obtained 
by using the zeroes of a wavefunction $M(r) corresponding to a reduced mass r 
different from the real reduced mass ,U but using the same potential curve; the $m(r) 
will be referred to below as the artzjkial wavefunctions. Within the WKB approx- 
imation, multiplying the reduced mass by a factor f2 gives a wavefunction &(r) with 
M= jN nodes at an energy E,+~ which is approximately (neglecting zero-point 
corrections) the same as EN. The zeroes of the artificial wavefunction may then be 
used to obtain abscissae for an M-point quadrature. 

Once the quadrature points have been chosen, it is necessary to establish the 
optimum values for the weights wi. If there are M such weights, we require M 
equations to determine them. Again by analogy with the Gaussian quadratures, which 
choose the weights such that integrals over the appropriate orthogonal polynomials 
are exact for order IZ < 2N, we define the weights by the requirement that all integrals 
over the artificial wavefunctions be exact for m < M. The M equations defining wi are 
then 

m = 0, M- 1. 
i=l 

This is a matrix equation for the weights, which must be solved numerically in the 
present case. In our implementation, the Qm(r) are first calculated on an equally 
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spaced mesh using the Cooley method, and the integrals on the right-hand side are 
calculated (once) by the trapezoidal rule. The abscissae xI are determined by inverse 
linear interpolation to find the zeroes of @iM(r); the linear approximation is adequate 
because the second derivative of a wavefunction is exactly zero at a node. Finally, the 
(b&J are determined using 4-point Lagrangian interpolation on the mesh used so 
solve the eigenvalue problem, and the matrix equation is solved using standard 
techniques. 

The most accurate quadrature is obtained using artificial wavefunctions calculated 
with reduced mass q = 4,~. This is because all the quadrature points necessarily lie 
between the classical turning points at energy E,~~, and the quadrature implicitiy 
assumes that outside this region the integrands behave in the same way as the 
functions used to optimise the weights. The artificial wavefunctions should therefore 
be chosen to have the same behaviour in the classically forbidden regions as the 
integrands of matrix elements. In a classically forbidden region, a wavefunction 
behaves approximately according to the WKB approximation [6] 

v(r) z [p(r)]-“” exp 

where 

and a is the classical turning point. Since the integrands of matrix elements involve a 
product of DVO wavefunctions corresponding to reduced mass ,D, the artificial 
functions Qm(r> at a given energy should ideally decay with an exponent twice that of 
the real wavefunctions. This is achieved if the artificial reduced mass is taken to be 
q = 4~, giving M 2 2N quadrature points between the classical turning points at 
energy E&~ zz E,. It was found empirically that an attempt to use more quadrature 
points than this did indeed give lower accuracy, and all calculations reported below 
used tl = 4~. 

Higher-order quadratures may be obtained by using the zeroes of higher-order 
artificial wavefunctions. This has the side effect of moving quadrature points into a 
region that was previously classically inaccessible, and thus results in a better 
representation of the exponential tails of integrands as well as of the oscillatory 
region. However, the order of quadrature available is limited by the fact that the 
artificial problem has a finite number of bound states. 

NUMERICAL TESTS 

This section presents three illustrative examples of the numerical results obtainable 
with the present method. The first is a numerically simple example designed to show 
the accuracy obtainable when the true results are known exactly, and the second 
demonstrates the generality of the method. The third is a test case taken from the 
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literature, and demonstrates the superiority of the present method over 

Gauss-Hermite quadrature. 
For the first example, we take a Lennard-Jones 12-6 potential with the reduced 

depth parameter B, = 10,000 [7]. This potential supports 24 bound levels. We seek a 
quadrature which is accurate for matrix elements between the lowest 10 or so Levels, 
and choose a 33-point quadrature based on the wavefunctions qim(r> of an artificial 
problem with rl= 4~ and m < 33. The quadrature points and weights were calculated 
using a radial mesh of 8000 points between r/r,,, = 0.65 and 6. These quadrature 
points were then used to calculate overlap integrals between the true wavefunctions 
v,(r) for n < 10; these wavefunctions should of course be orthonormal. The errors in 
the calculated overlap integrals are given in Table I; the quadrature is accurate to one 
part in 10’ for low vibrational quantum numbers and decreases to one part in 10’ for 
the highest considered. It should be noted that the integrand for the off-diagona.1 
element between m = 8 and m = 9 has 19 lobes, so that the accuracy achieved is 
quite impressive for a 33-point quadrature. 

The second test case is taken from vibrationally inelastic scattering of Hz 
molecules from rare gases, where the intermolecular potential can be expanded in 
powers of the diatom stretching coordinate < = (r - rO)/rO, with r0 = 0.7666438 A 
[8]; matrix elements of powers of < are thus required between all vibration-rotation 

TABLE II 

Points and Weights for 19.Point Quadrature 
in H, Model Problem (the Points Are the Zeroes 

of the L’ = 19, j = 0 Wavefunction) 

0.5044269369 0.0871984211 
0.5662262160 0.0459524097 
0.6212003658 0.0619016068 
0.6134156650 0.0442067301 
0.7246506765 0.0575426752 
0.7755982590 0.0448819010 
0.8269023352 0.0575604055 
0.8790200495 0.04684 15 126 
0.9323562055 0.0599 145585 
0.9873 104365 0.0499359381 
1.0443114140 0.0643950022 
1.1038542386 0.0544033097 
I..!&65463922 0.0716808388 
1.2331783376 O.O60932i’97 1 
E XI48430638 0.0838904589 
1.3831658691 0.0712592550 
1.4708 127594 0.1081137890 
1.5728782184 0.0911475502 
1.7024620890 0.1955244456 
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levels of H,. We consider matrix elements (Y, jl<’ ] 4,0), evaluated between 
wavefunctions calculated for the H, potential of Bishop and Shih [9]. The eigen- 
functions were computed on a mesh of 8000 points between r = 0.05 and 8.0 A. The 
points and weights for a 19-point quadrature are given in Table II, and the results of 
this quadrature scheme are compared with those of (essentially exact) trapezoidal 
integration on the BOOO-point mesh in Table III for vibrational levels up to u = 8 and 
rotational levels up to j = 8. The quadrature is accurate to about one part in lo3 for 
the lower vibrational levels and decreases to a few parts in lo3 for the highest. 

Another useful test case has been given by Truhlar and Onda [2] in demonstrating 
the efficiency of Gauss-Hermite quadrature for vibrational matrix elements. They 
considered off-diagonal-matrix elements of the quadrupole moment function for N, 

Q(r) = -1.8919 + 2.7137(r - r,) + 0.60733(r - r,J2 a.u. 

for a Morse potential chosen to model the lowest vibrational levels of N? 

V(r) = D[ 1 - exp(-a(r - r,))]’ 

TABLE III 

Comparison of Matrix Elements (v, j] 5’ /4,0) for the Hz Model Problem 
(the Upper Entry of Each Pair Is the Result of Trapezoidal Integration on an 8000.Point Mesh 

and the Lower Entry Is the 19.Point Quadrature Result) 

j 0 2 4 6 8 
0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.0020175 0.0017206 0.0010816 0.00023 16 -0.0006 107 
0.0020176 0.0017207 0.00108 18 0.00023 17 -0.0006 107 

-0.0107875 -0.0100482 -0.008206 1 -0.0049263 0.0004687 
-0.0107876 -0.0100486 -0.0082067 -0.0049267 0.0004685 

0.0370938 0.0391295 0.0443424 0.0538170 0.0690897 
0.0370940 0.039 1304 0.0443441 0.0538185 0.0690902 

0.0958679 0.1013887 0.1142172 0.1338712 0.1586262 
0.0958678 0.1013868 0.1142131 0.1338674 0.1586249 

0.2169965 0.2187201 0.2213326 0.2214234 0.2138122 
0.2169961 0.2187238 0.2213412 0.2214319 0.2138155 

0.144583 1 0.1391126 0.125605 1 0.1028711 0.0707376 
0.1445855 0.1391067 0.1255887 0.1028538 0.0707300 

0.04738 18 0.0417910 0.0297363 0.0138943 -00011420 
0.0473 74 1 0.0417989 0.0297648 0.0139268 -0.0011264 

-0.0274922 -0.0276 111 -0.0269078 -0.0236360 -0.0167396 
-0.0274730 -0.0276189 -0.0269534 -0.0236925 -0.0165691 

0.0142609 0.0153361 0.0172940 0.0187665 0:0178717 
0.0142199 0.0153391 0.0 1736 L5 0.018~82 0:oa ?j%% 

-0.0578088 -0.0088080 -0.01~450 -0.0135306 -0.0151299 
-0.00773 11 -0.0087978 -0.0110377 -0.0136690 -0.0152129 
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with D = 0.363900 a.u., a = 1.422760 a.u., and reduced mass ,u = 12765.813 a.u. 
Their results are compared with those of the present method in Table IV. It may be 
seen that the present method gives errors about an order of magnitude smaller than 
Gauss-Hermite quadrature for the same number of quadrature points. 

The quadrature scheme presented here thus provides sufficient accuracy for most 
purposes, and involves very few multiplications for each matrix element evaluation. 
In normal use, the points and weights and the values of all wavefunctions at the 
quadrature points are stored in a look-up table, so that no recalculation of 
wavefunctions is necessary. The present scheme is expected to be particularly 
valuable in inelastic scattering problems, where matrix elements of complicated inter- 
molecular potential functions are required. However, if the potential itself is expanded 
in terms of a series of polynomials, it may be simpler to store the matrix elements of 
the expansion functions than to apply the present quadrature scheme. 

A Fortran program for evaluating points and weights for this quadrature scheme 
for an arbitrary potential curve is available from the author on request. 
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