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A Gaussian-like quadrature scheme for evaluating matrix elements between one-
dimensional numerical wavefunctions is developed. The abscissae are the zeroes of a high
vibrational wavefunction for the potential curve concerned, and the weights are defined so that
integrals over low-order wavefunctions are evaluated exactly. The method gives results
sufficiently accurate for most purposes with only a few quadrature points, and is significantly
more accurate than Gauss—Hermite quadrature. It should be particularly valuable in reactive
and inelastic scattering problems.

There are many problems in molecular scattering and spectroscopy which require
matrix elements of operators between numerically calculated vibrational
wavefunctions. In the one-dimensional case, the wavefunctions themselves are usually
calculated on an equally spaced radial mesh using Numerov integration and the
Cooley method [1]. Traditionally, matrix elements are then calculated using
Simpson’s rule or the trapezoidal rule on the same radial mesh.

The traditional methods are quite expensive to apply, but present no difficulty
when only a few matrix elements are required. However, this is not always the case.
For example, in reactive and vibrationally inelastic scattering problems using realistic
potentials, matrix elements of potential energy functions must be calculated many
thousands of times, and it is not feasible to store all the vibrational wavefunctions on
a sufficiently fine mesh to evaluate the integrals accurately using the traditional
methods. It would also be computationally intractable to recalculate each vibrational
wavefunction every time it is required. It is thus desirable to devise a quadrature
scheme which allows matrix elements of an arbitrary function to be calculated using
a small number of quadrature points. To this end, we wish to find optimum sets of
points x; and weights w; such that a matrix element may be approximated
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The family of Gaussian quadratures enables a wide a range of integrals to be
calculated accurately with very few integration points, but none of them is
165

0021-9991/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproducrion in any form reserved.



166 JEREMY M. HUTSON

particularly suitable for integrands of the type found in vibrational matrix elements. If
Gauss—Legendre quadrature is used the integrand must be arbitrarily assumed to be
negligible beyond a specified range of r, while for Gauss—Laguerre and
Gauss—Hermite quadrature an appropriate exponent parameter must be chosen. In
neither case is the appropriate choice immediately obvious, although Gaussian
quadratures have been used for such problems [2]. For the special case of matrix
elements between orthogonal functions, Harrisetal. [3]| have introduced a useful
quadrature scheme, and this has been shown to be related to generalised Gaussian
quadrature [4]; however, the restriction to orthogonal functions prevents the
application of this scheme to matrix elements between states of different angular
nmomenta.

Although the usual Gaussian quadratures are not themselves appropriate for
calculating vibrational matrix elements, the methods used in deriving them [5]
suggest a useful approach to the development of a quadrature scheme with the
required properties. Gaussian quadratures choose as abscissae for an N-point
quadrature the zeroes of an Nth-order orthogonal polynomial. Vibrational
wavefunctions are not actually orthogonal polynomials, but they share some of their
important properties (notably orthogonality!). It therefore seems reasonable that the
zeroes of a vibrational wavefunction w,(r) would be a suitable set of points for
evaluating integrals over wavefunctions of the same potential with less than N nodes.

At first sight, one drawback of choosing the zeroes of y,(r) as abscissae appears to
be that the number of points cannot be increased without increasing the range they
span: the abscissae lie between the classical turning points at the energy E, of y ().
However, this is not an insuperable problem. A denser set of points may be obtained
by using the zeroes of a wavefunction ¢,,(r) corresponding to a reduced mass
different from the real reduced mass ¢ but using the same potential curve; the ¢,,(r)
will be referred to below as the artificial wavefunctions. Within the WKB approx-
imation, multiplying the reduced mass by a factor /% gives a wavefunction ¢,,(r) with
M= fN nodes at an energy ¢, which is approximately (neglecting zero-point
corrections) the same as E,. The zeroes of the artificial wavefunction may then be
used to obtain abscissae for an M-point quadrature.

Once the quadrature points have been chosen, it is necessary to establish the
optimum values for the weights w,. If there are M such weights, we require M
equations to determine them. Again by analogy with the Gaussian quadratures, which
choose the weights such that integrals over the appropriate orthogonal polynomials
are exact for order n < 2N, we define the weights by the requirement that all integrals
over the artificial wavefunctions be exact for m < M. The M equations defining w; are
then

M
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This is a matrix equation for the weights, which must be solved numerically in the
present case. In our implementation, the ¢,(r) are first calculated on an equally
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spaced mesh using the Cooley method, and the integrals on the right-hand side are
calculated (once) by the trapezoidal rule. The abscissae x; are determined by inverse
linear interpolation to find the zeroes of ¢,,(r); the linear approximation is adequate
because the second derivative of a wavefunction is exactly zero at a node. Finally, the
¢,,(x;) are determined using 4-point Lagrangian interpolation on the mesh used to
solve the eigenvalue problem, and the matrix equation is solved using standard
techniques.

The most accurate quadrature is obtained using artificial wavefunctions calculated
with reduced mass # = 4u. This is because all the quadrature points necessarily lie
between the classical turning points at energy ¢,,, and the quadrature implicitly
assumes that outside this region the integrands behave in the same way as the
functions used to optimise the weights. The artificial wavefunctions should thersfore
be chosen tc have the same behaviour in the classically forbidden regions as the
integrands of matrix elements. In a classically forbidden region, a wavefunction
behaves approximately according to the WKB approximation [6]
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and a is the classical turning point. Since the integrands of matrix elements invoive a
product of two wavefunctions corresponding to reduced mass g, the artificial
functions ¢,,(r) at a given energy should ideally decay with an exponent twice that of
the real wavefunctions. This is achieved if the artificial reduced mass is taken to be
n=4u, giving M =~ 2N quadrature points between the classical turning points at
energy &, ~ E,. It was found empirically that an attempt to use more quadrature
points than this did indeed give lower accuracy, and all calculations reported below
used n = 4u.

Higher-order quadratures may be obtained by using the zerces of higher-order
artificial wavefunctions. This has the side effect of moving quadrature points into a
region that was previously classically inaccessible, and thus results in a better
representation of the exponential tails of integrands as well as of the oscillatory
region. However, the order of quadrature available is limited by the fact that the
artificial problem has a finite number of bound states.

NuMERICAL TESTS

This section presents three illustrative examples of the numerical results obtainabie
with the present method. The first is a numerically simple examplie designed to show
the accuracy obtainable when the true results are known exactly, and the second
demonstrates the generality of the method. The third is a test case taken from the
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literature, and demonstrates the superiority of the present method over
Gauss—Hermite quadrature.

For the first example, we take a Lennard—Jones 12-6 potential with the reduced
depth parameter B, = 10,000 [7]. This potential supports 24 bound levels. We seek a
quadrature which is accurate for matrix elements between the lowest 10 or so levels,
and choose a 33-point quadrature based on the wavefunctions ¢,(r) of an artificial
problem with # = 4u and m < 33. The quadrature points and weights were caiculated
using a radial mesh of 8000 points between r/r, =0.65 and 6. These quadrature
points were then used to calculate overlap integrals between the true wavefunctions
w,(r) for n < 10; these wavefunctions should of course be orthonormal. The errors in
the calculated overlap integrals are given in Table I; the quadrature is accurate to one
part in 108 for low vibrational quantum numbers and decreases to one part in 197 for
the highest considered. It should be noted that the integrand for the off-diagonal
element between m =8 and m =29 has 19 lobes, so that the accuracy achicved is
quite impressive for a 33-point quadrature.

The second test case is taken from vibrationally inelastic scattering of H,
molecules from rare gases, where the intermolecular potential can be expanded in
powers of the diatom stretching coordinate &= (r —r)/ry, with ry=0.7666438 A
[8]; matrix elements of powers of ¢ are thus required between all vibration—rotation

TABLE 1I

Points and Weights for 19-Point Quadrature
in H, Mode!l Problem (the Points Are the Zeroes
of the v =19, j = 0 Wavefunction)

X
(A) Wy
0.5044269369 0.0877984211
0.5662262160 0.0459524097
0.6212003658 0.0619016068
0.6734756650 0.0442067301
0.7246506765 0.0575426752
0.7755982590 0.0448819010
0.8269023352 0.0575604055
0.8790200495 0.0468415126
0.9323562055 0.0599145585
0.9873104365 0.0499359387
1.0443114140 0.0643950022
1.1038542386 0.0544033097
1.1665463922 0.0716808388
1.2331783376 0.0609327971
1.3048430638 0.0838904589
1.3831658691 0.0712592550
1.4708127594 0.1081137890
1.5728782184 0.0911475502

1.7024620890

0.1955244456




170 JEREMY M. HUTSON

levels of H,. We consider matrix elements (v,j|&*|4,0), evaluated between
wavefunctions calculated for the H, potential of Bishop and Shih [9]. The eigen-
functions were computed on a mesh of 8000 points between r = 0.05 and 8.0 A. The
points and weights for a 19-point quadrature are given in Table II, and the results of
this quadrature scheme are compared with those of (essentially exact) trapezoidal
integration on the 8000-point mesh in Table III for vibrational levels up to v =8 and
rotational levels up to j = 8. The quadrature is accurate to about one part in 10* for
the lower vibrational levels and decreases to a few parts in 10° for the highest.
Another useful test case has been given by Truhlar and Onda [2] in demonstrating
the efficiency of Gauss—Hermite quadrature for vibrational matrix elements. They
considered off-diagonal -matrix elements of the quadrupole moment function for N,

Q(r)y=—1.8919 + 2.7137(r — r,,,) + 0.60733(r — r,,,)* a.u. (5)
for a Morse potential chosen to model the lowest vibrational levels of N,
V(r)=DI[1 —exp(—a(r — r,))|* (6)

TABLE III

Comparison of Matrix Elements (v, j| ¢” |4, 0) for the H, Model Problem
(the Upper Entry of Each Pair Is the Result of Trapezoidal Integration on an 8000-Point Mesh
and the Lower Entry Is the 19-Point Quadrature Result)

j 0 2 4 6 8

0
0 0.0020175 0.0017206 0.0010816 0.0002316 ~0.0006107
0.0020176 0.0017207 0.0010818 0.0002317 —0.0006107
1 —0.0107875 —0.0100482 —0.0082061 —0.0049263 0.0004687
—0.0107876 —0.0100486 —0.0082067 —0.0049267 0.0004685
2 0.0370938 0.0391295 0.0443424 0.0538170 0.0690897
0.0370940 0.0391304 0.044344( 0.0538185 0.0690902
3 0.0958679 0.1013887 0.1142172 0.1338712 0.1586262
0.0958678 0.1013868 0.1142131 0.1338674 0.1586249
4 0.2169965 0.2187201 0.2213326 0.2214234 0.2138122
0.2169961 0.2187238 0.2213412 0.2214319 0.2138155
5 0.1445831 0.1391126 0.1256051 0.1028711 0.0707376
0.1445855 0.1391067 0.1255887 0.1028538 0.0707300
6 0.0473818 0.0417910 0.0297363 0.0138943 ~0.0011420
0.0473741 0.0417989 0.0297648 0.0139268 ~0.0011264
7 ~0.0274922 —0.0276111 —0.0269078 —0.0236360 —0.0167396
~0.0274730 —0.0276189 —0.0269534 —0.0236925 —0.0167691
8 0.0142609 0.0153361 0.0172940 0.0187665 0.0178717
0.0142199 0.0153391 0.0173613 0.0138582 0.0179234
9 —0.0078088 ~0.0088080 ~D.OI9450 —0.0135306 —0.0151299

~0.0077311 —0.0087978 —0.0110377 —0.0136690 -0.0152129
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with D =0.363900 a.u., a=1.422760 a.u., and reduced mass u= 12765.813 a.u.
Their results are compared with those of the present method in Table IV. It may be
seen that the present method gives errors about an order of magnitude smaller than
Gauss—Hermite quadrature for the same number of quadrature points.

The quadrature scheme presented here thus provides sufficient accuracy for most
purposes, and involves very few multiplications for each matrix element evaluation.
In normal use, the points and weights and the values of all wavefunctions at the
quadrature points are stored in a look-up table, so that no recalculation of
wavefunctions is necessary. The present scheme is expected to be particularly
valuable in inelastic scattering problems, where matrix elements of complicated inter-
molecular potential functions are required. However, if the potential itself is expanded
in terms of a series of polynomials, it may be simpler to store the matrix elements of
the expansion functions than to apply the present quadrature scheme.

A Fortran program for evaluating points and weights for this quadrature scheme
for an arbitrary potential curve is available from the author on request.
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